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Abstract. We propose a new metaheuristic, FRACTOP, for global optimization. FRACTOP is based
on the geometric partitioning of the feasible region so that search metaheuristics such as Simu-
lated Annealing (SA), or Genetic Algorithms (GA) which are activated in smaller subregions, have
increased reliability in locating the global optimum. FRACTOP is able to incorporate any search
heuristic devised for global optimization. The main contribution of FRACTOP is that it provides
an intelligent guidance (through fuzzy measures) in locating the subregion containing the global
optimum solution for the search heuristics imbedded in it. By executing the search in nonoverlapping
subregions, FRACTOP eliminates the repetitive visits of the search heuristics to the same local area
and furthermore, it becomes amenable for parallel processing. As FRACTOP conducts the search
deeper into smaller subregions, many unpromising subregions are discarded from the feasible region.
Thus, the initial feasible region gains a fractal structure with many space gaps which economizes
on computation time. Computational experiments with FRACTOP indicate that the metaheuristic
improves significantly the results obtained by random search (RS), SA and GA.

Key words: FRACTOP, Geometric partitioning, Fuzzy measures

1. Introduction

Despite the advanced computer support we have at hand, optimization problems are
still challenging for researchers working in mathematics as well as in operations
research. Limited success has been achieved in classifying and identifying global
optima in nonlinear programming (NLP). Classical gradient-based algorithms such
as the Quasi-Newton method (Fletcher and Powell 1963; Gill and Murray 1972),
the modified steepest descent algorithm (Armijo 1966), or the conjugate gradient
method (Fletcher and Reeves 1964) may be readily trapped by local optima when
the feasible region around the unique optimum is not well-conditioned (Beveridge
and Schechter 1970). Consequently, search algorithms which enhance the explo-
ration of the feasible region through the use of a population of solutions such as
Multi Level Single Linkage (MLSL) (Kan and Timmer 1984; Törn and Viitanen
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1994), Genetic Algorithms (GA) (Goldberg 1989; Michalewicz 1994), and prob-
abilistic search techniques such as Simulated Annealing (SA) (Kirkpatrick et al.
1983) have been developed for global optimization to quit local optima.

GAs conduct a search on a population of solutions (chromosomes) and they
involve asexual reproduction, crossover (or sexual reproduction) and mutation.
Through crossover, new chromosomes are added to the population while unfit
old chromosomes die out. In MLSL, numerous solutions are generated randomly
among which some of them are selected as a starting solution for local search.
The selection of solutions is made geometrically, that is, if a solution is the only
minimum within a specified radius, then it is selected for the application of local
search. On the other hand, SA is a single solution search method and it converges
to the optimum by randomly generating a neighbour solution to the incumbent
solution, and then, guiding the search with a cooling scheme which enables it to
refuse or accept a disimproving solution according to an acceptance probability.
SA permits disimproving moves in order to leave behind local optima. The search
methods discussed above have both strong and weak points. The GA is given a lot
of freedom to generate new chromosomes using crossover and mutation operators.
However, it may take a long time to converge to the global optimum. Furthermore,
the GA may end up in a local optimum solution, because the crossover operator
reshuffles the genes already existing in the previous population and new genes are
introduced by the mutation operator only. Thus, the GA’s performance may depend
on the random population generated as the starting population. MLSL is a practical
method with probabilistic guarantees of convergence. However, when the function
optimized consists of a large number of local optima, it might be computationally
inefficient to generate the number of solutions implied by the termination criterion
on which the convergence probability is based. As for SA, besides depending on the
starting solution, it has the additional disadvantage of working on a single solution
and lacks the diversity of a GA.

Here, we develop a metaheuristic which shares some of the concepts in interval
subdivision method (Caprani et al. 1993; Csendes and Pinter 1993) for nonlinear
function optimization with simple bounds on the variables. However, here, rather
than discarding the regions unlikely to contain the global optimum, the metaheuris-
tic is focussed on locating the narrow subspace where the global optimum lies.
The metaheuristic partitions the feasible region systematically into nonoverlapping
subspaces to provide smaller sweeping spaces for any search method activated for
detecting any local/global optimum solution encompassed by each subspace. Then,
the sample of solutions contained in each subspace are compared against other
regions’ samples and the most promising subspace is selected for re-partitioning in
the next level (the selected subspace is subjected to a more intensified search, since
its size is smaller) while some of the inferior subspaces are discarded and some
are preserved within their current bounds. The selection of the subspace for re-
partitioning and the discarding action are executed according to a fuzzy measure.
Due to the discarded subspaces the feasible region assumes a fractal nature with
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several space gaps of varying volumes. The metaheuristic is from now on called
Fractal Optimization Approach (FRACTOP) due to the fractal characteristic of the
remaining feasible region where the search continues.

In the following sections, the mechanics of FRACTOP are discussed in detail
and several evidence collection methods used in this study are described. Next,
the possible extensions to FRACTOP to enable its utilization in other areas of opti-
mization, such as constrained NLP, mixed integer NLP (MINLP) and combinatorial
optimization, are discussed. Finally, computational results are provided on thirteen
nonlinear functions selected from the literature. The improvement in performance
provided by FRACTOP is demonstrated by imbedding into FRACTOP, random
search (RS), SA and GA and comparing the results with the corresponding stand
alone applications.

2. Description of FRACTOP

FRACTOP is based on the strategy of ‘divide and conquer’. The search is con-
ducted by partitioning first the initial closure,G, of the feasible region inRn into
2n identical subregions, wheren is the number of variables. These subregions
are obtained by bisecting the lower and upper bounds of every variable and they
constitute the surface faced at the first level of the search tree.

In the next step, a number of solutions,s, and their functional evaluations are
collected (randomly or by using a metaheuristic such as SA or GA) from each sub-
region and it is assumed that the sample of solutions, Ait , collected from a subre-
gionαit (i andt represent the subregion and tree level indices, respectively)represents
the behaviour of the function optimized within that subregion.

The evidence provided by each sample (each taken from the available subre-
gions) is mapped onto a zero-one real valued interval through a fuzzy evidence
measure,m(Ait ), defined below.

m(Ait ) = 1/s
s∑
j=1

[(Fj/F ∗)exp(1− Fj/F ∗),

whereFj andF∗ are, respectively, the functional evaluation of solutionj in sample
Ait , and the best functional value obtained so far.m(Ait ) tends to smooth out the rel-
ative differences between the functional evaluations. This measure is used against
traps set by local optima so that if an influential local optima is located at a certain
subregion, its contribution to the evidence measure is not accentuated. Otherwise,
the search would immediately pick up that particular subregion and re-partition it
into narrower and narrower subregional areas. As the areas get smaller, solutions
which are very close to the local optimum are also identified and their contributions
affect significantly the evidence measure. Thus, the chance of backtracking to the
region where the global optimum lies diminishes and the search may terminate at
a given tree level without finding the global optimum.
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The belief that the global optimumx∗ lies in a subregionαit is denoted as
Bel(αit ). The subregionα∗it with the maximum belief is selected for repartitioning
into identical subregions in the next level of the search tree whereas the lower
and upper bounds of all variables in the remaining undiscarded subregions are
preserved at their current values.

Bel(αit ) is a function that retains both the sample information gathered at cur-
rent tree levelt and the genetic information related toαit acquired during the
previous level. Bel(αit ) is expressed as follows:

Bel(αit ) = γBel(α′it )+ (1− γ )m(Ait ), for 0≤ γ ≤ 1,

whereα′it (A’ it ) denotes the parent subregion (sample obtained from the parent
subregion), that isαit ⊂ α′it in terms of size.

In order to carry out a global search rather than a local one (our fuzzy measure
does not provide 100% guarantee that the optimal point is included in the selected
territory), the subregions which are not re-partitioned are also subjected to re-
sampling in the next level without being split into further smaller subregions. The
sample size,s, can be fixed throughout the search or it may vary in proportion to
the size of the subregion. However,s is not permitted to drop below a minimum
number. Consequently, after a few partitioning iterations, subregions of different
sizes are subjected to the same sample size and the smaller subregions are subjected
to a more intensified search. Thus, in each level of the search tree simultaneous
search is conducted on different regional partitions but in varying intensity.

Given thatkt subregions preserve their bounds at levelt and 2n −1 new sub-
regions emanate from the selected subregion, the number of total subregions in
level t + 1 becomeskt+2n −1. The sample collection procedure is then repeated
in each subregion on the surface of the tree. However, before moving on to a next
level in the search tree, some subregions may be discarded from the search based
on the criterion of ‘Bel(αjt )/Bel (α∗it ) < ρ’ whereρ is a constant less than one.
Furthermore, if a subregion’s size is reduced below a certain small value, then it is
also discarded. The elimination of some subregionsj reduces the computational
burden of the search while the feasible region assumes a fractal structure with
some disjoint feasible subspaces. The resulting nonconvexity in the feasible re-
gion is not a problem for FRACTOP, because the search covers disjoint subregions
independently anyway.

In Figure 1, we assumen=1 without loss of generality and demonstrate how
the search may jump from one subregion to the next according to the support of
gathered evidence. The partitioning iterations end according to a stopping criterion
defined by the user. The best solution obtained so far is reported.

The geometric diversification and intensification described in Figure 1 may lead
to a deeper search within a territory which is geometrically remote from the sub-
region selected for re-partitioning in the current level. In this respect, FRACTOP
closely resembles the breadth-first branch and bound technique (B&B) often used
in combinatorial optimization. The crucial difference is that in FRACTOP each
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Figure 1. Visualisation of the search executed by FRACTOP in one dimension (#: subregion
having the best belief measure for levelt).

branch represents a portion of the feasible space rather than a singular partial
solution. Similar to the B&B, some areas are chopped off and the areas which
do not seem to be hopeless, are further investigated while the most promising one
is searched more intensively.

Figure 2 sets an example for a FRACTOP search path in three dimensions.
White blocks are discarded during the search which has been diverted from the
first region to the second, when the comparison among the deeper partitions in the
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Figure 2. An example for the search path adopted by FRACTOP in three dimensional feasible
space.

first region and the re-investigated second region lead to the conclusion that the first
region no longer holds the promise it had before deeper partitioning. The darkest
region is the one where FRACTOP has finally converged.

The systematic partitioning of the feasible region into disjoint subregions helps
the search to overcome the premature convergence issue common to many search
methods. Diversification and intensification are achieved naturally throughout the
search process by diverting the search from an area which loses its promise once a
deeper search is executed, to an area which becomes comparatively attractive after
new evidence is gathered. The fuzziness in the evidence measure diminishes as
more and more samples are taken from the corresponding subregion. It is important
to note that unattractive areas are not totally abandoned. Rather, they are subjected
to a less intensive search as compared to the area where the search is focussed.

FRACTOP economizes on computation time by applying search in nonover-
lapping regions and discarding considerably unfavorable subspaces. Apart from
stochastic search methods, classical gradient-based methods may also benefit from
geometric partitioning. In the most simple case, for a given convex function with
a valley around the unique optimum, gradient-based methods may converge rather
slowly, zigzagging all the time. Smaller subregions where the gradient search (ac-
tivated for a limited number of times) may eliminate a lot of zigzagging while
discarded subregions may eliminate many gradient calculations taking place far
from the region where the optimum lies.

Due to the geometric partitioning approach in FRACTOP, revisits to the same
regions occurring in other non-geometric search methods (SA, GA) are eliminated
considerably and additionally, the search achieves the ability to deal with feasible
regions originally defined as fragmented disjoint regions (e.g., regions described by
either/or constraints). In FRACTOP the search is confined to the specified bound-
aries of each subregion. Consequently, the search in each subregion is directed
towards the local (global) optimum existing within that subregion. Non-geometric
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search methods have the problem of re-visiting the areas close to the solutions
previously visited. In Tabu Search (Glover 1989), long and short term memory
tabulists which forbid the search from returning to previously visited solutions are
used in order to eliminate repetitive visits. In SA, the search may return to the area
around the same local optimum after wandering about unfavorable feasible regions
(in fact, this situation occurs frequently and efforts are made through tabulists
imbedded in SA to avoid this situation; see Bozyel and Özdamar 1997; Özdamar
and Bozyel 1998). The same issue arises in GAs where many chromosomes in
the population acquire the same genes after converging to a local minimum and
mutation is applied to prevent the trap set up by the local minimum. In an attempt
to prevent premature convergence, Özdamar and Birbil (1998) permit infeasible
chromosomes in the population and then occasionally apply a SA procedure in-
corporating tabulists to a number of chromosomes randomly selected from the
population. In the latter reference, diversity is also achieved by migrating parallel
populations.

In FRACTOP, although the number of subregions increase exponentially at each
level t with the number of variables,n,it is possible to reduce the complexity by
variable reduction techniques applied in each subregion (e.g., regression) or by
utilizing other linear or low polynomial partitioning approaches. As presented here,
the re-partitioning scheme of FRACTOP emphasizes each dimension on an equal
scale which is the ideal case. Furthermore, FRACTOP can be executed on parallel
processors where search in different subregions may be carried out independently.
The global data to be exchanged between the host and the slave processors in-
clude the bounds of existing subregions, F∗ andFj belonging toAit taken from the
subregions at the current levelt. The search tasks are carried out independently.

3. FRACTOP: A fuzzy optimization approach

FRACTOP is a fuzzy approach, because as long as every solution in the feasible
region is not evaluated in an exhaustive manner (since the search is in real domain),
the boundaries (maximum and minimum values) of the function optimized over
each subregion are fuzzy. (Reviews of fuzzy theory is given by Klir and Folger
(1988) and Zimmermann (1991) among others.)

The type of uncertainty involved here is close to the concept of fuzziness called
non-specificity by Yager (1983) and resolutional uncertainty by Pal and Bezdek
(1994). In the case of our metaheuristic, although the function can be evaluated
exactly for a given solution, the manner in which we collect samples from each
subregion is not guaranteed to discover the lowest (highest) functional value ex-
isting over the subregion. That is, ‘the uncertainty arises from the limitations of
the evidence gathering system’ (Pal and Bezdek 1994). A review of uncertainty
measures for evidential reasoning is provided by Pal et al. (1992, 1993).

In FRACTOP, the search tree is managed by Bel(αit ) which incorporates genetic
evidence as well as fresh evidence collected. Bel(αit ) behaves like autoregressive
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models in time series and the effects of genetic evidence gathered from levels prior
to level t decrease exponentially. Although the effect of parental evidence dies
out exponentially, it still has an influence on the selection of the most promising
subregion. In our experiments, which were conducted withγ ranging from 0.0 to
1.0, we observed that the best results are obtained with a value lying within the
interval 0.1 and 0.2. Genetic evidence is used for the following reason. Since the
evidence gathering procedure has no guarantee of locating the best solution in each
subregion, a region which seemed to be promising in a previous level, may turn out
to be totally unfavourable during the re-sampling process at the current level of
the search. The genetic evidence then becomes influential and may prevent the
elimination of a potential container of the global optimum.

In FRACTOP, the management of the search tree and the imbedded geometric
partitioning mechanism accord with the following three axioms stated by Ross
(1995, p. 559), for belief measures. Here, we demonstrate how these axioms fit in
FRACTOP’s method of conducting the search.

Suppose that subregionαit at levelt and its parent regionα’ it containx∗.

(i) Bel(φ) = 0 and Bel(S) =1, whereφ andSrepresent the case of no evidence and
the case of complete evidence, respectively. Thus, the first axiom is satisfied.

(ii) Bel(α ′it )≤ Bel(αit∪α′it ), where Bel(αit∪α′it ) denotes the information obtained
from the united samples (Ait ∪ A’ it ) and Bel(α’ it ) denotes the information
obtained from the sample A’it . Sinceαit covers a smaller region aroundx∗, the
information gathered is relatively more certain than that of the parent region’s,
α’ it . Thus, the second axiom holds, becauseA′it ⊆ (Ait ∪A′it ). In Figure 3, we
observe the inverse relationship between the size of subspaces and fuzziness.

(iii) Bel(α ′it∪αit ) = Bel(α′it ) + Bel(αit )− Bel(α′it∩αit ) holds, because Bel(α′it∪αit )
= Bel(αit ) and Bel(α′it ∩ αit ) = Bel (α′it ) due to the second axiom.

If the search is terminated at a given level of the tree, then each region’s belief
value represents the evidence of containing the global optimum. From this point

Figure 3. The relationship between fuzziness and subspace size.
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on, the user may continue his search for the global optimum by restricting the
feasible region with the bounds of the region(s) with the highest belief value(s) and
start applying a procedure which utilizes information embedded in the function
optimized, such as the gradient. Thus, FRACTOP might be used as a preliminary
fast method to locate the whereabouts of the global optimum.

4. Methods of evidence collection

There are numerous methods to gather evidence from each subregion. For demon-
stration purposes, here we utilize RS, SA and GA in evaluating subregions. How-
ever, the latter three methods are not the only possible evidence gathering tools.
Gradient-based methods or MLSL could also be used to provide evidence about
a geometric region. Furthermore, a different method can be selected to evaluate
each subregion, because the belief measure involves functional evaluations on an
average basis. For instance, in the initial level of the search, MLSL can be used to
evaluate large chunks of the feasible space. Then, medium-sized subregions could
be handled by the GA and then finer regions could be investigated by SA or the
steepest descent method. Here, once we specify the evidence gathering method,
we stick to it until the end, so that we can have a fair comparison of each method
in stand alone mode versus being imbedded in FRACTOP. In the following we
indicate briefly how we apply RS, SA and GA.

Random sampling (RS). Each subregion is evaluated by randomly takingssolu-
tions within its bounds and using their functional evaluations in the belief measure.

Simulated annealing (SA). As in RS, each subregion is evaluated by randomly
taking s solutions within its bounds. However, these solutions are regarded as
the initial starting points from which SA begins neighbourhood search. To every
random starting point, a prespecified number of SA moves (which is reduced ac-
cording to the size of the subregion) are applied. In a SA move, first, a dimension
in which the solution will be perturbed is selected randomly. Then, a stepsize (pos-
itive/negative) which will not push the current solution out of regional bounds is
selected randomly. The new solution is evaluated. If there is an improvement in
the current best functional evaluation, the solution is accepted. Else, the solution is
accepted according to a probability of acceptance, PA, defined by

PA(FDif , tSA) = exp(−FDif/(FctSA))

where,Fc is the functional evalution of the current solution,FDif is the difference
between the functional evaluations of the new solution and the latest solution, and
tSA is the temperature. If a randomly generated number between zero and one turns
out to be less than PA, then the deteriorating move is carried out.

tSA depends on the number of times a deteriorated cost has been obtained
consecutively. InitiallytSA is equal to one, but after each non-improving move,
the temperature,tSA, is reduced as follows.

tSA← tSA/(1+ βtSA),
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whereβ is a nonnegative constant less than one (preferably between 0.05 and 0.1).
Once all SA moves have been carried out for an initial random solution, the best

solution found during these iterations replace the initial starting solution and be-
comes one of the sample solutions to represent the subregion in the belief measure.

Genetic algorithm (GA). Each subregion is evaluated by randomly takings
solutions within its bounds. These solutions constitute the initial population for
GA. A float encoding used in the GA, that is, each chromosome hasn genes, each
consisting of a real number which indicates the value of thenth variable.

The reproduction opeator works as follows. Each chromosome is assigned a
reproduction probability equal to its relative functional value,RFj (= (F ∗ −
Fj)/F

∗ − Fworst) in the population. Then, during a single pass over all chromo-
somes, a chromosome is picked up for the next generation randomly if a random
number less than one turns out to be less thanRFj .

After reproducing the parent population, a single pass is executed over all chro-
mosomes in order to identify the set of chromosomes, C, to undergo crossover.
A chromosome’s crossover probability is again equal toRFj . Note thatRFj de-
pends on both the chromosome’s performance and the population’s performance.
Adaptive crossover and mutation rates such as RFj are demonstrated to work well
with multi-modal functions (Srinivas and Patnaik 1994) and they have been also
tested in a difficult combinatorial optimization problem (Özdamar 1998). Next, a
pair of chromosomes are randomly selected from C to result in an offspring. The
offspring’s gene values result from the convex combinations of the corresponding
parent genes. Offspring are generated until the set C becomes empty. The off-
spring replace the chromosomes with the worst functional values in the previous
generation.

Since the population always remains within the convex hull specified by the
boundary limits of the initial random population, mutation is applied to all the
genes of the chromosomes selected for mutation to maintain diversity in the pop-
ulation. The mutation probability of a chromosome is equal toRFj which is re-
calculated after crossover. A single pass over the new population identifies the
chromosomes that are to be mutated. In mutation, every gene’s value is either
decreased or increased (which is a random decision) by a randomly determined
amount which respects the bounds of each dimension in the considered subregion.

4.1. AN EXAMPLE

The following example demonstrates how FRACTOP converges to an optimum
solution. Consider the functionf (x, y) = sin(x) sin(y) in Figure 4. This function
has multiple optimal solutions in the intervals, 1≤ x ≤ 5 and−2 ≤ y ≤ 6, at
coordinates (π /2, π /2), (3π /2, -π /2) and (3π /2, 3π /2), or approximately, at (1.57,
1.57), (4.71,−1.57) and (4.71, 4.71), respectively, each withf (x, y) = 1.

Figure 5 demonstrates the contours of the objective function with a projection
to the coordinate system. An optimum solution is reached with an accuracy of
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Figure 4. Example function.

10−6at the fourth level. The region that contains the coordinates (π /2, π /2) is
selected repeatedly at each level of the tree until the size of the selected region
becomes quite small, and the search converges to a region whose boundaries are
(1.5, 1.625)×(1.5, 1.75). Note that the crossed out regions in Figure 5 are discarded
at the first level, since their belief values are small with respect to that of the re-
partitioned region. The other two regions (containing the other two minima) that are
not re-partitioned, are not discarded. Therefore, once the region containing (π /2,
π /2) becomes too narrow, the search will locate the other minima if permitted to go
on. Naturally if the user wishes a quicker convergence he/she may use a discarding
ratio of higher value and will end up with a smaller number of evaluations.

5. Possible extensions of FRACTOP

Constrained optimization. FRACTOP is easily adaptable to constrained optimiza-
tion. Similar to the case of simple bounded variables discussed here, FRACTOP
would be initiated by identifying a closure of the feasible region,G. However, the
closure would not be minimal. Identifying the minimal closure of ann-dimensional
feasible space specified by a set of nonlinear equationsg(x), is a research subject
in itself and therefore, a simple closure identification scheme is adopted here. If
the search is conducted in the n-dimensional space, for each variablexi , 1, . . . , n,
i = 1, . . . , n, each equation ing(x) is solved where the remainingn-1 variablesxj
are set to 0,j 6= i. The lower and upper bounds (LBi & UB i) are thus calculated
for xi . A natural outcome of this method is that infeasible solutions are included in
the closure. Infeasibility can be dealt with using different approaches. The simplest
approach is to ignore the infeasible solutions in the sample and calculate the belief
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Table 1. The iterations of FRACTOP.

Level Region Regional bounds Belief of Best value Decision No. of

(t) α(i,t) (x)×(y) regions obtained on regions evaluations

Bel(αit ) (F∗)

0 1,0 (1,3)×(2,6) 0.286203 0.967555 preserved 40

2,0 (1,3)×(−2,2) 0.504116 selected

3,0 (3,5)×(2,6) 0.192677 preserved

4,0 (3,5)×(−2,2) 0.365606 preserved

1 1,1 (1,3)×(2,6) 0.147354 0.984023 discarded 70

2,1 (1,2)×(0,2) 0.745949 selected

3,1 (1,2)×(−2,0) 0.150126 discarded

4,1 (2,3)×(0,2) 0.428105 preserved

5,1 (2,3)×(−2,0) 0.178990 discarded

6,1 (3,5)×(2,6) 0.266319 preserved

7,1 (3,5)×(−2,2) 0.220976 preserved

2 1,2 (1,1.5)×(1,2) 0.869372 0.996453 preserved 70

2,2 (1,1.5)×(0,1) 0.462551 preserved

3,2 (1.5,2)×(1,2) 0.896172 selected

4,2 (1.5,2)×(0,1) 0.537004 preserved

5,2 (2,3)×(0,2) 0.459380 preserved

6,2 (3,5)×(2,6) 0.303752 preserved

7,2 (3,5)×(−2,2) 0.291175 preserved

3 1,3 (1,1.5)×(1,2) 0.919032 0.998634 preserved 100

2,3 (1,1.5)×(0,1) 0.435450 preserved

3,3 (1.5,1.75)×(1.5,2) 0.944974 selected

4,3 (1.5,1.75)×(1,1.5) 0.919015 preserved

5,3 (1.75,2)×(1.5,2) 0.905079 preserved

6,3 (1.75,2)×(1,1.5) 0.896526 preserved

7,3 (1.5,2)×(0,1) 0.435912 preserved

8,3 (2,3)×(0,2) 0.421746 preserved

9,3 (3,5)×(2,6) 0.394266 preserved

10,3 (3,5)×(−2,2) 0.315258 preserved

4 1,4 (1,1.5)×(1,2) 0.741136 0.999997 preserved 130

2,4 (1,1.5)×(0,1) 0.545157 preserved

3,4 (1.5,1.625)x(1.5,1.75) 0.982319 selected

4,4 (1.5,1.625)×(1.75,2) 0.930914 preserved

5,4 (1.625,1.75)x(1.5,1.75) 0.932722 preserved

6,4 (1.625,1.75)x(1.75,2) 0.976587 preserved
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Table 1. (Continued)

Level Region Regional bounds Belief of Best value Decision No. of

(t) α(i,t) (x)×(y) regions obtained on regions evaluations

Bel(αit ) (F∗)

7,4 (1.5,1.75)x(1,1.5) 0.926896 preserved

8,4 (1.75,2)x(1.5,2) 0.775833 preserved

9,4 (1.75,2)x(1,1,5) 0.877272 preserved

10,4 (1.5,2)x(0,1) 0.599215 preserved

11,4 (2,3)x(0,2) 0.482069 preserved

12,4 (3,5)x(2,6) 0.221382 preserved

13,4 (3,5)x(−2,2) 0.347852 preserved

Example information: Number of samples taken from each region: 10 (fixed throughout the
search) Genetic information value: 0.25 Region discarding criterion: Bel(αij )/ Bel(α∗

ij
) < 0.25

Number of levels permitted in the search tree: 4 Total number of evaluations: 410.

measure using the feasible data only. If the evidence collection method does not
identify any feasible solutions within a subregion, the search might give that sub-
region another chance in the next level of the tree or discard it immediately. This
approach can be supported by corrective actions applied to an infeasible solution
once it is detected. If a solution involves a small degree of infeasibility, corrective
actions might push the solution into the feasible region by slightly perturbing the
values of some variables.

A nice property of geometric partitioning is that it is easy to treat soft con-
straints. The right-hand sides of the constraints may be expanded as required and
a penalty based on fuzzy membership values of the right hand sides may be added
to the objective function value of each solution.

Discrete variables. The system to be optimized may include binary (0–1) or
general integer discrete variables in the objective function as well as in the con-
straints. The resulting model then becomes a nonlinear mixed integer (binary)
model (MINLP). The constraints may be nonlinear or linear. The re-classification
of the variables does not affect the procedural structure of FRACTOP. There would
simply be an additional classifier in the database for each variable. All evaluation
techniques are based on an initial random sample and in this case, some variables
would be subjected to an integer restriction while being generated. Then, the feasi-
bility of the discrete variables would be preserved in further applications (SA, GA,
etc.).

In some practical combinatorial optimization problems which involve both real
and binary variables and linear constraints (Özdamar and Birbil 1998; Tempelmeier
and Dersdorf 1996) it is not possible to conceive a polynomial algorithm for iden-
tifying a feasible solution from which a search procedure can start (not only the
identification of the optimal solution is NP-Complete, but also the constraint satis-
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Figure 5. Objective function contours of the example function and regional partitions carried
out by FRACTOP.

faction problem). The geometric partitioning structure in FRACTOP facilitates the
issue of constraint satisfaction in hard problems, because it is a systematic method
which sweeps over the initial (partly infeasible) closure.

6. Computational experience with FRACTOP

Thirteen nonlinear functions are selected for the computational experiments. The
first six functions (the fifth one has two variants, the first one with three variables
and the second one with four) are selected by Androulakis and Vrahatis (1996)
for comparing the convergence rates of different gradient-based numerical search
methods. The next three functions (the third one has three variants with the number
of variables equal to 2, 4 and 5, respectively, with each variant having increased
epistacity) are used by Srinivas and Patnaik (1994) in order to compare their adap-
tive GA, AGA (which involves adaptive crossover and mutation rates), with simple
GA, SGA. The last function is a spiky function used in Michalewicz (1994) to
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show the mechanics of a GA. The mathematical expressions for all functions and
their corresponding references are given in the Appendix.

In order to demonstrate the improvement in the performance of the search
methods imbedded in FRACTOP, we compare the results obtained by FRACTOP
+ search method with the ones obtained by the stand alone application of the
specific search method. An equal number of evaluations are permitted for both
applications. We compare the results by indicating the average (standard deviation)
objective function value obtained in 100 runs, each carried out with a different
random seed. The best (worst) objective function values obtained in 100 runs are
also reported. FRACTOP is permitted to continue until at most the tenth level of
the tree or until no more improvement is observed as compared to the preceding
level. The stand alone search method to which the results of FRACTOP are to be
compared is permitted to execute the same number of functional evaluations as
FRACTOP. In Table 2, all performance measures are provided for FRACTOP+RS
and stand alone RS, as well the average number of functional evaluations executed
by each of the 100 runs. The results for FRACTOP+GA and GA, and the results
for FRACTOP+SA and SA are given in Tables 3 and 4, respectively. The number
of samples,s, collected from each region is 100 at level zero in FRACTOP+RS
and FRACTOP+GA (s indicates population size in GA). In the next levels,s is
decreased in the proportion of the size of the considered subregion to the size of
the initial closureG. However,s is not permitted to be below 30. Regardless of
the size of the subregion, the GA runs for 20 generations. As for FRACTOP+SA,
s = min {2n,12} and is constant at all levels of the tree. However, the number of
SA moves are decreased in proportion of the size of the subregion to the size of
the initial closure, starting at 100 at level zero. In all applications, a subregion is
discarded if ratio of its belief measure to the maximum belief measure is less than
80%.

The computational experiments demonstrate that FRACTOP improves consid-
erably all three search methods imbedded in it. The performance of FRACTOP+SA
is somewhat inferior to that of SA in the last two functions and their variants
(#10..13) which require a higher accuracy in the size of the subregions over which
the search is conducted. Namely, the sinusodial movement of these functions take
place in a very narrow range and FRACTOP+SA requires to execute more par-
titioning levels with reduced sample sizes. On the other hand, stand alone SA
ploughs its way through ‘spikes’ because the spikes have a positive trend towards
the upper corner (with coordinates 12.1 and 5.8) of the feasible region.

In this experiment, we are not particularly interested in the search method which
provides the best results. Rather, the emphasis lies on the fact that FRACTOP, as
a geometric partitioning metaheuristic, disposes of the numerous disadvantages
pertaining to the search metaheuristics previously proposed for global optimization
and improves their results.

A further remark on FRACTOP is on its convergence to the small area con-
taining the global optimum. For instance, in Table 4, in functions no. 1, 4, 5, 6,
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Table 2. Comparison of results (FRACTOP+RS and stand alone RS).

FRACTOP+RS RS

Func # of func. Average Standard Worst Best Average Standard Worst Best

# evaluations dev. dev.

1 1240 0.000052 – 0.0008 0 0.0169 0.0002 0.0685 0.00007

2 1112 0.00588 0.0002 0.0943 0 0.0291 0.001 0.1552 0.0006

3 1306 0.0194 0.007 0.688 0.00002 0.3375 0.1296 2.3321 0.0002

4 2330 0.478 0.24 2.905 0.0004 1.5262 0.9132 4.0427 0.0312

5 3388 1.0005 0.000001 1.0061 1.00001 1.0134 0.0002 1.0843 1.0002

6 6931 1.0024 0.000159 1.1153 1.00006 1.1336 0.0099 1.4212 1.0072

7 4606 0.0514 0.0101 0.2951 0.0001 0.4001 0.523 1.2231 0.0057

8 1808 0.0102 0.000002 0.1866 0.0048 0.0711 0.0022 0.1964 0.0097

9 1163 0.87 0.05 1.3791 0.159 2.1937 0.3732 3.8263 1.0142

10 1000 0.0038 0.000004 0.0101 0.00005 0.5895 0.1775 1.9124 0.0476

11 4523 0.0157 0.00003 0.0338 0.0041 0.1012 0.0007 0.1825 0.0317

12 12324 0.00452 0.000026 0.0191 0.0012 1.3794 0.8624 2.015 0.253

13 2941 38.18 0.178 37.15 38.849 37.76 0.1832 36.69 38.69

Standard dev. = ’-’ means standard deviation is less than 10−6.
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Table 3. Comparison of results (FRACTOP+GA and stand alone GA).

FRACTOP+GA GA

Func # of func. Average Standard Worst Best Average Standard Worst Best

# evaluations dev. dev.

1 100137 0.000001 – 0.00004 0 0.0011 0.000001 0.0061 0.000007

2 105063 0.000003 – 0.00009 0 0.0024 0.000005 0.0113 0.00001

3 105825 0.000025 – 0.0005 0 0.0136 0.00025 0.0791 0.0003

4 204750 0.0078 0.0436 0.3024 0.000001 0.0986 0.0061 0.4444 0.0037

5 336334 1.00005 – 1.0009 1 1.0003 – 1.0017 1.000001

6 493555 1.0047 0.00009 1.0559 1.000001 1.0078 0.000028 1.0318 1.00019

7 356099 0.0152 0.0020 0.2495 0 0.0202 0.00014 0.0548 0.0021

8 102622 0.00038 - 0.0035 0.000001 0.0055 0.000014 0.0097 0.000004

9 92743 0.0643 0.0009 0.1474 0.0152 0.2173 0.00777 0.4732 0.0612

10 97745 0.00005 - 0.0003 0.000003 0.0027 0.000002 0.0076 0.0003

11 393452 0.0006 0.000001 0.0060 0.00002 0.0100 0.00002 0.0231 0.0020

12 801364 0.005 0.00007 0.0492 0.0001 0.0123 0.000045 0.0350 0.0024

13 173072 38.82 0.0189 38.51 38.85 38.79 0.00348 35.54 38.849
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Table 4. Comparison of results (FRACTOP+SA and stand alone SA).

FRACTOP+SA SA

Func # of func. Average Standard Worst Best Average Standard Worst Best

# evaluations dev. dev.

1 4866 0 0 0 0 0.00002 - 0.0001 0

2 4484 0.000008 – 0.0004 0 0.0046 0.0001 0.067 0.000001

3 4888 0.0004 0.000005 0.0166 0 0.0008 0.000002 0.0062 0.000003

4 3281 0 0 0 0 1.978 0.842 2.8231 0.00008

5 3082 1 0 1 1 1.0006 0.000001 1.0042 1.000007

6 6802 1 0 1 1 1.0037 0.00001 1.0139 1.00008

7 37836 0.0002 – 0.0021 0.000009 0.00001 – 0.0002 0

8 2115 0 0 0 0 0.0192 0.0002 0.0784 0.0007

9 866 0.00004 - 0.0005 0 0.9251 0.119 2.0318 0.2381

10 7357 0.0004 - 0.0017 0.00004 0.0003 – 0.0012 0.00001

11 54796 0.0036 0.00002 0.018 0.0002 0.0002 – 0.0007 0.00004

12 101964 0.0131 0.00024 0.068 0.001 0.0003 – 0.0007 0.00008

13 10165 38.75 0.0177 38.52 38.85 38.80 0.0016 38.73 38.85
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8, FRACTOP has converged to the exact location of the global optimum in 100%
of the 100 runs. In the spiky function (function no.13), although FRACTOP does
not seem to improve the performance of stand alone SA, the bounds of the region
that FRACTOP finally converges to, includes first variable of the global optimum
valuex∗1=11.62523 in 100 out of 100 runs, and in 91 out of 100 runs, it includes
the global solution’s second variable valuex∗2=5.725082. The boundaries of the
converged subregion are very tight ( 0.2 and 0.1, on the average, for first and second
variables, respectively).

7. Conclusion

We develop a geometric partitioning metaheuristic, FRACTOP, which is an ex-
pansive geometric method in which any search approach suggested for global
optimization can be embedded. The aim of FRACTOP is to eliminate some of
the disadvantages existing in stochastic search techniques, such as eliminating re-
visits to the same area of the feasible region and providing the correct sequence
of diversification and intensification required for converging to the global opti-
mum. Intelligent guidance to lead the search into promising regions is provided by
evaluating and comparing nonoverlapping regions using fuzzy measures.

Although the current partitioning scheme used in FRACTOP is exponential
in the number of variables, this issue does not pose a serious problem, because
any linear partitioning scheme might have been used. Future work will include
the development of an efficient and intelligent linear partitioning scheme as well
as applying FRACTOP to constrained optimization and mixed integer nonlinear
problems.

Appendix

1. Complex Function (Press et al. 1992),n = 2

f1(x1, x2) = (x3
1 − 3x1x

2
2 − 1)2+ (3x2

1x2 − x3
2)

2, −2≤ xi ≤ 2, i = 1,2.

This function has three minimax∗1 = (1,0),x∗2 = (−1
2,
√

1/2) andx∗3 = (−1
2,
√

3/2)
with f(x∗i ) = 0, i = 1,2,3.

2. Stenger Function (Stenger 1975),n = 2

f2(x1, x2) = (x2
1 − 4x2)

2+ (x2
2 − 2x1 + 4x2)

2,−1≤ xi ≤ 4, i = 1,2.

This function has two minimax∗1=(0, 0) andx∗2 = (1.695415, 0.7186082) withf(x∗i )
= 0, i= 1, 2

3. Himmelblau Function (Botsaris 1978),n = 2

f3(x1, x2) = (x2
1 + x2− 11)2 + (x1+ x2

2 − 7)2,−6≤ xi ≤ 6, i = 1,2.

This function has four minimax∗1= (3,2),x∗2=(−2.805118, 3..131312),x∗3=(3.584428,
−1.848126) andx∗4=(−3.779310,−3.283186) withf(x∗) = 0
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4. Hellical Valley Function (More et al. 1981),n = 3

f4(x1, x2, x3) = 100(x3 − 10θ(x1, x2)
2+ 100(

√
x2

1 + x2
1 − 1)2+ x2

3

−2≤ x1 ≤ 4, and − 2≤ xi ≤ 2, i = 2,3.

Q(x1x2) =
{

1
2π arctan( x2

x1
) for x1 > 0

1
2π arctan( x2

x1
)+ 0.5 for x1 < 0

This function has one minimum:x∗ = (1,0,0) with f (x∗) = 0
5. Brown Almost Linear Function, forn=3 (More et al. 1981)

f5(x1, x2, x3) =
n∑
i=1

g2
i (x1, x2, x3), −2≤ xi ≤ 4, i = 1,2,3,

where

gi(x1, . . . , xn) = xi +
n∑
j=1

xj − (n+ 1), i = 1, . . . n− 1,

andgn(x, . . . , xn) =
(
5n
j=1xj

)− 1

The minimum of this function is atx∗i = 1 for i = 1,2,. . . ,n with f(x∗) = 1.
6. Brown Almost Linear Function, forn=4 (More et al. 1981) has the same

optimum.
7. Extended Kearfott Function,n=4 (Kearfott 1979; Vrahatis 1988)

f7(x1, x2, x3, x4) = (x2
1 − x2

2)
2+ (x2

2 − x2
3)

2+ (x2
3 − x2

4)
2+ (x2

4 − x2
1)

2,

where− 3≤ xi ≤ 10, i = 1,2,3,4.

This function has two minimax∗1 = (1,1,1,1) andx∗1 = (0,0,0,0) withf(x∗i ) = 0, i=1,2.
8. The Sine Envelope Sine Wave Function,n = 2

f8(x1, x2) = 0.5+
sin2

√
x2

1 + x2
2 − 0.5

1.0+ 0.001(x21 + x2
2)]2

, −100≤ xi ≤ 100, i= 1,2

the optimum value isx∗ = (0,0) with f(x∗) = 0.
9. Function of Davis (1987),n=2

f9(x1, x2) = (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1)+ 1.0]
−100≤ xi ≤ 100, i= 1,2

the optimum value isx∗ = (0,0) with f(x∗) = 0.
10. Epistacity Test Function by Srinivas and Patnaik (1994),n=2

f10(xi) =
2∑
i=1

sin(πkxi)

(πkxi)
, −0.5≤ xi ≤ 0.5, i = 1,2
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the optimum value isx∗ = (0,0) with f(x∗) = 0.
11. Epistacity Test Function by Srinivas and Patnaik (1994),n=4, has the same

optimum as (#10).
12. Epistacity Test Function by Srinivas and Patnaik (1994),n=5, has the same

optimum as (#10).
13. The Spiky Function (Michalewicz 1994)

f13(x1, x2) = 21.5+ x1 sin(45x1)+ x2 sin(205x2) − 3≤ x1 ≤ 12.1,

4.1≤ x2 ≤ 5.8.

The optimum value isx∗=(11.62523, 5.72082) withf(x∗) 38.85.
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